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Abstract
Medical imaging data have been widely used in modern health care, particu-
larly in the prognosis, screening, diagnosis, and treatment of various diseases.
In this study, we consider a latent factor-on-image (LoI) regression model that
regresses a latent factor on ultrahigh dimensional imaging covariates. The latent
factor is characterized by multiple manifest variables through a factor analysis
model, while the manifest variables are subject to nonignorable missingness. We
propose a two-stage approach for statistical inference. At the first stage, an effi-
cient functional principal component analysis method is applied to reduce the
dimension and extract useful features/eigenimages. At the second stage, a factor
analysis mode is proposed to characterize the latent response variable. Moreover,
an LoI model is used to detect influential risk factors, and an exponential tiling
model applied to accommodate nonignoreable nonresponses. A fully Bayesian
method with an adjust spike-and-slab absolute shrinkage and selection opera-
tor (lasso) procedure is developed for the estimation and selection of influential
features/eigenimages. Simulation studies show the proposed method exhibits
satisfactory performance. The proposed methodology is applied to a study on the
Alzheimer’s Disease Neuroimaging Initiative data set.
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1 INTRODUCTION

Alzheimer’s disease (AD), the most common cause of dementia, is an irreversible and progressive brain disorder that
slowly destroys memory and thinking skills and, eventually, the ability to carry out the simplest tasks. It is the sixth leading
cause of death in the United States. AD is characterized by the loss of neurons and synapses in the cerebral cortex and
certain subcortical regions. A probable diagnosis can be acquired based on medical tests. However, initial AD symptoms
are often mistaken for normal aging. A definite diagnosis requires brain tissue examination. Early diagnosis of AD is
important. Although no cure has been found yet, treatments are available to slow the worsening of the symptoms and
improve quality of life for patients with AD.

Neuroimaging is among the most promising areas of research focusing on early detection of AD because microscopic
changes in the brain begin long before the first signs of memory loss. We focus on magnetic resonance imaging (MRI), a
noninvasive structural imaging technique that can be acquired comparatively easily and has already been used extensively
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for clinical diagnosis and medical research. Structural imaging provides information on the shape, position, or volume
of brain tissue. Having shown that the brains of AD patients shrink significantly as the disease progresses, structural
imaging research also has shown that shrinkage in specific brain regions, such as the hippocampus, may be an early sign
of AD. However, scientists have not yet reached a consensus on this finding. In this study, we focus on MRI to explore its
potential for use in the early diagnosis of AD.

Our study is motivated by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data set. The ADNI study began
in 2004 and is the first “Big Data” project for AD. We aim to investigate the associations between the pathology of AD
characterized by various cognitive tests and the MRI data as well as clinical/behavioral variables through a joint mod-
eling approach, thereby providing new insights into the early diagnosis of AD. After applying a standard preprocessing
pipeline, the dimension of the processed MRI images is 128× 128× 128. The scores of three tests, namely, AD assessment
scale 13 (ADAS13), Rey auditory verbal learning test-learning (RAVLT), and functional assessment questionnaire (FAQ),
with over 40% missingness are available for the assessment of cognitive ability. Given the data background, the follow-
ing scientific questions are of particular interest and worthy of investigation: (i) How can AD progression be measured
using the three cognitive tests together? (ii) How can influential brain regions highly associated with AD progression be
identified based on available MRI images? (iii) How can large amount of missingness of the cognitive test responses be
managed effectively?

To answer the first question, we utilize a factor analysis model to formulate cognitive ability as a latent factor and mea-
sure it through the scores of the three tests. These test results are highly correlated and characterize cognitive ability from
different perspectives. We consider formulating a latent response instead of implementing multiple regression because
it can greatly reduce computational complexity and provide a clear model interpretation. Moreover, the latent variable
retains the information that is useful for AD diagnosis from the multiple test scores. We use the doctor’s diagnosis (CN
or AD) as ground-truth to evaluate the K-means clustering results based on the multiple test scores and latent variable.
The accuracy given by K-means is 76.8% based on the scores of ADAS13, RAVLT-learning, and FAQ, and 77.8% based on
the latent variable (the value of the latent variable at the last MCMC iteration is used for simplicity). This result implies
that the latent variable can adequately summarize the information of the multiple tests.

To answer the second question, we develop a latent factor-on-image (LoI) regression model to examine the association
between cognitive decline and MRI images. Figure S1 in the Supplementary Material shows several slices of the processed
MRI images from two randomly selected CN (the first two rows) and two randomly selected AD subjects (the last two
rows). The MRI images exhibit distinct spatial features across CN and AD subjects. For example, compared to CN brains,
the AD brains have enlarged ventricles (in the middle of the images, with dark color). Thus, incorporating image predic-
tors with such strong spatial structures into a regression brings new challenges to statistical inference. These challenges
include (i) the ultrahigh dimensional unknown parameter, which is of the same size as the three-dimensional (3D) image
predictor, (ii) the complex spatial information, and (iii) the remarkable variability of brain structure across subjects. Many
regularization methods, such as high-dimensional variable selection and supervised learning,1,2 are available for dimen-
sion reduction in the analysis of high-dimensional data. However, the unstructured regularization methods may suffer
from diverging spectra and noise accumulation because of the strong spatial correlation in high-dimensional predictors
and the nonsparse regression coefficients of these predictors.3 Meanwhile, the structured regularization methods (eg, the
fused least absolute shrinkage and selection operator [lasso] or Ising prior) can be computationally challenging in the
presence of ultrahigh-dimensional imaging predictors.4 Alternative methods for dimension reduction include principal
component analysis (PCA) or screening methods, which extract a comparatively small number of important “features” or
eliminate nonsignificant voxels.5,6 Among these methods, the functional PCA (FPCA) technique has shown high poten-
tial in feature extraction and prediction,7,8 where the image is regarded as functional data and the spatial association is
wrapped up in the features/eigenimages. To our knowledge, the existing FPCA-related methods have focused on select-
ing the first several leading principal components with large variances.9,10 However, preceding studies argued that despite
having small variances, later principal components could actually be more important than the leading ones in principal
component regression, for example, References 11,12. Given these results, we propose a two-stage Bayesian approach
to address the aforementioned challenges. In the first stage, we extract features/eigenimages from MRI images through
(unsupervised) FPCA, which preliminarily reduces the dimensionality and spatial dependency of the imaging data. In
the second stage, we introduce a spike-and-slab lasso (SSL) procedure13 to select significant features/eigenimages.

To address the third question, we must consider a plausible missing data mechanism. Figure S2 in the Supplementary
Material displays the scatterplot of the baseline scores of the three tests for subjects with and without missingness at the
36th month follow-up visit. The missingness of the test scores do not appear to occur at random. Subjects with high scores
of ADAS13 and FAQ or low scores of RAVLT are likely to be unresponsive in the follow-up visit. Such nonignorability of
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F I G U R E 1 From left to
right, S1, S2, S3: A, sample
images; B, true image
parameters 𝜷 (white color); C,
estimated �̂� by adjusted SSL; D,
estimated �̂� by traditional BIC
method [Colour figure can be
viewed at
wileyonlinelibrary.com]

missingness should be accommodated appropriately. Statistical inference in the presence of nonignorable missing data
is a challenging problem because the missing mechanism is generally unknown and must be determined based on the
data.14,15 In this study, we consider a logistic regression to model the nonignorable missingness of the three cognitive tests.

The present study contributes to the analysis of regression with imaging data in several aspects. First, we provide an
efficient two-stage dimension reduction approach composed of a feature/eigenimage extraction through FPCA in the first
stage and feature/eigenimage selection through SSL in the second stage. Unlike available methods that focus on several
leading principal components with large variances, the proposed method also takes into account later principal compo-
nents (PCs) with small variances. As far as we know, this is the first time to incorporate later PCs under FPCA framework.
The simulation study presented in Section 4 (Figure 1C,D) demonstrates that the performance of the proposed method
is significantly improved with the use of later PCs. The SSL procedure adopted in the second stage selects important fea-
tures/eigenimages further by assigning spike-and-slab priors to the regression coefficients of LoI. Second, we introduce
a latent factor to facilitate the integration of multiple measurements of cognitive ability through a factor analysis model.
The introduction of the latent factor enables comprehensive characterization of cognitive ability and reduces the mul-
tivariate imaging regression to a univariate one, thereby facilitating a conceptually simple and attractive interpretation
on the associations between cognitive ability and MRI images along with other potential risk factors. Finally, we pro-
pose the use of an exponential tilting model to accommodate the nonignorability of missingness in the context of the LoI
regression model, thereby avoiding a biased inference caused by simple deletion/imputation of missing data.

The rest of the article is organized as follows. Section 2 presents the model description. Section 3 introduces the
spike-and-slab prior and associated SSL procedures. In Section 4, simulation studies are conducted to examine the
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performance of the proposed method. Section 5 applies the developed methodology to the ADNI study. Section 6
concludes the article. Technical details and additional results are provided in an online Supplementary Material.

2 MODEL DESCRIPTION

2.1 Functional principal component analysis (FPCA)

Suppose we have a sample of N 3D images of grid size (v1, v2, v3) and V = v1 × v2 × v3 is the total number of voxels. We
vectorize the images before conducting FPCA. Let Xi = (Xi(1), · · · , Xi(V ))′, i= 1, … N denote the vectorized images.
Following Zipunnikov et al7 and Di et al,16 we regard Xi as functional data and consider a functional model Xi(v) =
𝜇(v) + X̃ i(v), i = 1, · · · ,N where v denotes a voxel coordinate, image 𝜇(v) is the overall mean image, and X̃ i(v) is the
subject-specific deviation from the overall mean. In what follows, we always work on X̃ i(v). With a slight abuse of nota-
tion, we use Xi(v) instead of X̃ i(v) throughout this article to denote the voxelwise centered image. We regard Xi(v) as a
zero-mean second-order stochastic process with covariance function K(v1, v2) = E[Xi(v1)Xi(v2)]. As argued by Zipunnikov
et al,7 the measurement errors of images are not included because the images are usually presmoothed (see a brief descrip-
tion in Section 5). The Karhunen-Loeve expansion of the centered random process17 has the form Xi(v) =

∑∞
k=1 𝜉ik𝜙k(v),

where 𝜙k(v)s are the eigenfunctions of the covariance function K(v1, v2), and 𝜉ik are uncorrelated eigenscores with non-
increasing variance 𝜎2

k . Given N observations, we utilize a common estimator of the covariance operator K, that is,
K̂ = 1

N

∑N
i=1 XiX′

i . For imaging data, the number of voxels (V) is usually much larger than the sample size (N). Thus, we
have rank(K̂) = N. The eigendecomposition of K̂ is K̂ = �̂�N�̂�N�̂�

′
N where �̂�N is a V ×N matrix with orthonormal columns

�̂�k, which provide the estimates of eigenfunctions 𝜙k(v)s, and �̂�N = diag(�̂�1, · · · , �̂�N) is an N ×N diagonal matrix with
decreasing nonnegative eigenvalues.

Next, we consider an expansion of Xi on N estimated eigenfunctions/eigenimages. With a slight abuse of terminology,
we use eigenfunctions and eigenimages interchangeably throughout this article. The expansion is expressed as follows:

Xi(v) =
N∑

k=1
𝜉ik�̂�k(v) or Xi = �̂�N �̂�i, (1)

where �̂�i = (𝜉i1, · · · , 𝜉iN)′, and 𝜉ik is the kth eigenscore corresponding to the kth eigenimage �̂�k(v). Then, each image
Xi = (Xi(1), · · · , Xi(V ))′ becomes a stacking of N eigenimages �̂�k = (�̂�k(1), · · · , �̂�k(V))′, k = 1, · · · ,N with N correspond-
ing uncorrelated eigenscores 𝜉i1, · · · , 𝜉iN . Thus, the dimension of the image is reduced form V to N. Meanwhile, the spatial
dependencies of the elements of Xi are described by the eigenimages.

Then, we show how to acquire the estimates of the eigenimages �̂�N and eigenscores �̂�i, i = 1, · · · ,N. In image data
analysis, the number of voxels V can be extremely large, such as 128× 128× 128= 221. Conducting the eigendecompos-
tion of a V ×V matrix K̂ to acquire �̂�N is difficult. For example, the brute-force eigenanalysis requires O(V 3) operation,
which involves an infeasible level of complexity. Therefore, we consider an alternative approach to acquire �̂�N . Let
X= (X1, · · · , XN) be a V ×N matrix. Notably, the number of images N is typically much smaller than the number of voxels
V . Thus, the matrix X has at most rank N, and the singular value decomposition (SVD) X=USV′ can be obtained with
O(VN2 +N3) computational effort.18 U is a V ×N matrix with N orthonormal columns, S is an N ×N diagonal matrix,
and V is an N ×N orthonormal matrix. Then, we show the relationship between SVD and FPCA. From the SVD, we
have K̂ = 1

N
XX′ = 1

N
US2U′. Compare with the eigendecomposition of K̂, we have 1

N
US2U′ = �̂�N�̂�N�̂�

′
N . Given that all

eigenvalues of K̂ are different, the eigendecomposition of K̂ is unique. Thus, we acquire

�̂�N = U, �̂�N = 1
N

S2. (2)

Based on Equation (1), we have

�̂� = SV′, (3)

which is the estimated best linear unbiased predictors given by McCulloch et al.19
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In summary, to obtain the estimated eigenimages �̂�N and eigenscores �̂� of FPCA, we only need to conduct SVD of the
V ×N matrix X, and then apply Equations (2) and (3).

2.2 Latent factor-on-image (LoI) regression model

First, we introduce a factor analysis model for characterizing a latent factor of interest. Consider a unidimensional latent
factor 𝜂i (eg, cognitive ability), which is characterized by a q× 1 vector of observed variables yi = (yi1, · · · , yiq)′ (eg, q= 3,
and yi1, yi2, yi3 represent the three cognitive test scores). A factor analysis model is defined as follows:

yi = 𝝁 + 𝝀𝜂i + 𝝐i, (4)

where 𝝁 = (𝜇1, · · · , 𝜇q)′ is a q× 1 vector of intercepts, 𝝀 = (𝜆1, · · · , 𝜆q)′ is a q× 1 vector of factor loadings, and
𝝐i = (𝜖i1, · · · , 𝜖iq)′ is a q× 1 vector of random errors independent of 𝜂i and distributed as N(0,𝚿𝜖) with a diagonal covari-
ance matrix 𝚿𝜖 . Notably, the factor analysis model (4) is unidentifiable because multiplying 𝝀 simultaneously by an
arbitrary nonzero constant C and 𝜂i by 1

C
results in the same likelihood function, implying that 𝝀 and 𝜂i are not simul-

taneously estimable. This indeterminacy can be addressed by fixing appropriate elements in 𝝀 at preassigned values, for
example, References 20,21. In the present study, we fix the first element in 𝝀 at 1.

Let zi be a r1 × 1 vector of observed covariates and Xi be the centered and vectorized image predictor. We define an
LoI regression model as follows:

𝜂i = 𝜶′zi +
1

cV

V∑
v=1

𝛽(v)Xi(v) + 𝛿i, (5)

where 𝜂i is the latent factor defined in (4), 𝜶 is a r1 × 1 vector of regression coefficients; 𝛽(v) is the regression coefficient
of Xi(v) at the vth voxel; cV is a normalizing scalar determined by the total number of voxels V ; 𝛿i is a random error; and
𝛿i ∼ N(0, 𝜓𝛿). The interpretation of 𝜷 = (𝛽(1), · · · , 𝛽(V))′ is that the image regions with large |𝛽(⋅)| are influential. The
normalizing scalar cV can be absorbed into the image predictors. The role of cV is to rescale the total effect of massive
image predictors (ie, the summation in (5)), such that this total effect is bounded away from infinity when V increases.
The value of cV can be chosen as V 1/2.22

For the ultrahigh-dimensional centered image vector Xi = (Xi(1), … , Xi(V ))′, the FPCA is applied as described in
the previous session to reduce dimensionality. With the eigenimages �̂�N = (�̂�1, · · · , �̂�N) derived and estimated from the
FPCA, Xi has unique Karhumem-Loeve expansion Xi(v) =

∑N
k=1 𝜉ik�̂�k(v). We assume that 𝜷 = (𝛽(1), · · · , 𝛽(V))′ can also

be expanded on 𝚽N . While this assumption restricted the flexibility of 𝛽(⋅), it can simplify the problem significantly.
We demonstrate in Section 5 that a satisfactory result can be obtained even such an assumption is violated. Under this
assumption, we have

𝛽(v) =
N∑

k=1
𝛽k�̂�k(v), (6)

where 𝛽k is the coefficient of the kth eigenimage �̂�k(v). The orthonormality of the eigenimages implies that
∑V

v=1 �̂�
2
k(v) = 1

and
∑V

v=1 �̂�k(v)�̂�l(v) = 0, for k≠ l. Thus, we have
∑V

v=1 𝛽(v)Xi(v) =
∑N

k=1 𝛽k𝜉ik.
In substantive study, the last portion of eigenimages can be very massy and of little information. Thus, we follow

the common practice of incorporating the first P eigenimages that keep approximately 99% of the variability [(�̂�1 + · · · +
�̂�P)∕(�̂�1 + · · · + �̂�N) = 0.99].23 The Lol regression in Equation (5) can be rewritten as follows:

𝜂i = 𝜶′zi +
1

cV

P∑
k=1

𝛽k𝜉ik + 𝛿i, (7)

where 𝜉ik is the kth eigenscore estimated in the first stage and 𝛽k is the unknown coefficient of 𝛽(v) expansion. Once we
acquire the estimation of 𝛽k, we can use Equation (6) (with the first P eigenimages) to reconstruct 𝛽(v). Although P is
much smaller than V , it is still comparable to sample size N because the decreasing of variance is slow in FPCA.24
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2.3 Missing data mechanism

We introduce an indicator vector ri = (ri1, · · · , riq) to label the missing entries in yi = (yi1, … , yiq)′, where rij = 1 if yij is
missing and rij = 0 otherwise. We assume a Bernoulli distribution of rij: for j= 1, … , q, rij|yij,wi ∼ Bernoulli(𝜋i), where
wi is an r2 × 1 vector of covariates. Let pij =Pr(rij = 1|yij, wi). A missing data model is considered as follows:

logit(pij) = 𝜌j0 + 𝝆′
j1wi + 𝜑jyij, (8)

where 𝜌j0 is an intercept, 𝝆j1 is an r2 × 1 vector of regression coefficients, and 𝜑j is the tilting parameter that determines
the amount of departure from the ignorability of the missing mechanism. If 𝜑j = 0, then the missing probability does not
depend on the missing data, and the missing mechanism becomes ignorable.

3 POSTERIOR INFERENCE

3.1 Spike-and-slab lasso (SSL) prior

In Equation (7), the number of unknown parameters is (r1 +P), which is comparable to sample size N. We assume the
sparsity of𝜷 = (𝛽1, · · · , 𝛽P)′ because of the following reasons. First, the eigenimages can be considered as features extracted
from the imaging data. Naturally, not all features are important for explaining the variation of the images. Second, this
assumption is common for a feasible statistical inference in high-dimensional regression and variable selection problems.

To select and estimate significant 𝛽ks under a high-dimensional setting, we consider the spike-and-slab lasso prior13

as follows:

p(𝜷|𝜸) =
P∏

k=1
[𝛾k𝜓1(𝛽k) + (1 − 𝛾k)𝜓0(𝛽k)], (9)

where 𝜓1(𝛽) =
𝜈1
2

e−𝜈1|𝛽| with small 𝜈1 serves as a diffused “slab distribution” for modeling large effects; 𝜓0(𝛽) =
𝜈0
2

e−𝜈0|𝛽|
with large 𝜈0 serves as a concentrated “spike distribution” for modeling negligibly small effects; and 𝜸 = (𝛾1, · · · , 𝛾P)′, 𝛾k ∈
{0, 1} indexes the 2P possible subset models. The scope of SSL priors can be vastly enhanced with different choices of
p(𝜸). Inspired by Ročková and George,13 we consider an exchangeable prior for p(𝜸) as follows:

p(𝜸|𝜋) =
P∏

k=1
𝜋𝛾k (1 − 𝜋)1−𝛾k , p(𝜋) = Beta(a1, b1), (10)

where 𝜋 = P(𝛾k = 1) is the expected fraction of large 𝛽ks. Through this 𝜋 parameter, an opportunity to learn about the level
of sparsity of 𝜷 = (𝛽1, · · · , 𝛽P)′ is provided to the penalty imposed on the regression coefficients. A conjugate Beta prior is
assigned to 𝜋. we choose hyperparameter a1 = 1 and b1 =CP for some constant C > 0 to ensure the posterior consistency
of the parameter estimators.13

We also consider a variant of SSL. The abovementioned SSL priors assume that all predictors are centered and stan-
dardized. However, the variances of eigenscores 𝜉ik in Equation (7) decrease as k increase, leading to a violation of the
standardization assumption. Thus, we consider an adjusted “spike distribution” as follows:

𝜓0k(𝛽k) =
𝜈0𝜏k

2
exp(−𝜈0𝜏k|𝛽k|), k = 1, · · · ,P. (11)

The 𝜓0k is now a Laplace distribution with parameter 𝜈0𝜏k, where 𝜏k is a parameter for adjusting 𝜈0 across k to cope
with the decreasing variance of 𝜉ik, k= 1, … , P. We impose an inverse-Gamma prior for 𝜏k as follows:

p(𝜏k) = IGamma(a2k, b2k), k = 1, · · · ,P, (12)

where hyperparameters a2k and b2k are chosen as a2k = 1
sd(𝜉ik)

+ 1 and b2k = 1, and sd(𝜉ik) is the standard deviation of
𝜉ik, i = 1, · · · ,N. Consequently, the prior distribution of 𝜏k has a mean sd(𝜉ik) and small variance. Given that the posterior
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samples of 𝜏k𝜈0 tend to be small if sd(𝜉ik) is small, 𝛽k is more likely to be shrunk to zero.13 The performance of the SSL
prior and the adjusted version (Equation (11)) will be evaluated through simulation studies in Section 4.

For other parameters, we assign commonly used prior distributions, most of which are conjugate-type priors. The
details are provided in the Supplementary Material.

3.2 Posterior sampling

Let D be the set of observed data and 𝜽 be the vector of all unknown parameters including 𝝁, 𝝀, 𝚿𝜖 , 𝜶, 𝜷, 𝜸, 𝜋, 𝜓𝛿 , 𝝆,
and 𝝓. The main task of Bayesian inference is to estimate 𝜽 by sampling from its posterior distribution p(𝜽|D). How-
ever, this posterior distribution is intractable because it involves high-dimensional integrations due to the existence of
latent variable 𝜂i and missing data in yi. Thus, we employ the idea of data augmentation. Let 𝜼 = {𝜂i ∶ i = 1, · · · ,N}
be the set of latent variables, ym = {yij|rij = 1, i= 1, … , N; j= 1, … , q} be the set of missing data. Then, D is augmented
with 𝜼 and ym, and the Bayesian estimate of 𝜽 can be obtained by using the samples drawn from the joint posterior dis-
tribution p(𝜽, 𝜼, ym|D). We use Gibbs sampler to sample iteratively from the full conditional distributions p(ym|𝜽, 𝜼,D),
p(𝜼|𝜽, ym,D), and p(𝜽|ym, 𝜼,D). Some of the abovementioned posterior distributions are not in familiar forms because
of the nonignorable missing mechanism and the SSL prior. Hence, the Metropolis-Hastings algorithm is utilized to sam-
ple from these complex distributions. We determine convergence of the algorithm by examining the plots of several
MCMC chains starting from different initial values. At convergence, these MCMC chains should mix adequately. The full
conditional distributions involved in the Gibbs sampler are provided in the Supplementary Material.

4 SIMULATION STUDY

In this simulation, we examine the performance of the proposed method for an LoI model with 2D images (128× 128).
The images are 2D slices extracted from the preprocessed N = 806 3D (128× 128× 128) MRI images in the ADNI data set.
The details of the preprocessing procedures will be explained in the real data analysis section. We consider three scenarios
of 2D image predictors (Xi) as follows:

• Scenario 1 (S1): axial slice with thalamus,
• Scenario 2 (S2): coronal slice with hippocampus, and
• Scenario 3 (S3): sagittal slice with frontal lobe gyrus.

Three sample images generated under the above scenarios are shown in the first row of Figure 1A. For each scenario,
a true parameter image 𝜷 = (𝛽(1), · · · , 𝛽(V))′ is specified. The shapes of the true parameters are shown in Figure 1B (in
white color), which can be interpreted as the thalamus, hippocampus, and sulcus in the frontal lobe, respectively. The true
values at voxels inside the specified shape are all set to be 0.1 for S1, 1.0 for S2 and S3, and the true values at other voxels
are all set to be 0. The other parts of the model are the same across all the scenarios. For the LoI model (Equation (7)), let
r1 = 2, zi = (zi1, zi2)′, where zi1 and zi2 are generated independently from N(0, 1),𝜶 = (0.8, 0.8)′, and𝜓𝛿 = 0.3. For the factor
analysis model (Equation (4)), let q= 4,𝝁 = (0, 0, 0, 0)′, 𝝀 = (𝜆1, 𝜆2, 𝜆3, 𝜆4)′ = (1.0∗, 0.8, 0.8, 0.8)′, where the first element is
fixed at 1.0 for model identification, and 𝜓𝜖1 = 𝜓𝜖2 = 𝜓𝜖3 = 𝜓𝜖4 = 0.3. For the exponential tilting model (Equation (8)), let
r2 = 2, wi = (wi1, wi2)′, where wi1 and wi2 are generated independently from N(0, 1), 𝜌j0 = −2,𝝆j1 = (0.5, 0.5)′, and𝜓j = 0.5.
The overall missing proportion of yi is approximately 40%.

We use scenario 1 as an example to demonstrate the procedure. After extracting 2D images Xi, i= 1, … , N from the
MRI images of the ADNI data set, we generate 𝜂i according to Equation (5), yij according to Equation (4), and rij according
to Equation (8). Then, we conduct the two-stage analysis. In the first stage, we estimate the eigenimages and eigenscores
using FPCA. Let X= (X1, … , XN) be the V ×N imaging data matrix. Here, V = 4854 (instead of 1282) because we delete
the background voxels with values always being 0. We can obtain the SVD of X/cV (the constant cV =

√
V ≈ 70 is absorbed

into the image covariates) using Matlab function “svd.” The eigenimages �̂�N and eigenscores �̂� are obtained based on
Equations (2) and (3). Figure S3(a) of the Supplementary Material shows the first eight estimated eigenimages.

In the second stage, we conduct Bayesian inference using SSL and adjusted SSL. Notably, instead of incorporat-
ing all N eigenimages, we actually only use the first P= 380 eigenimages that explain 99.05% of the variability defined
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by (�̂�1 + · · · + �̂�P)∕(�̂�1 + · · · + �̂�N), where �̂�ks are the eigenvalues that can be acquired from Σ̂N = 1
N

S2. One reason for
using the first P= 380 eigenimages is that the variances of later eigenscores are all less than 0.002, which contains
very little information. Another reason is that the eigenimages corresponding to later eigenscores become very massy
(the 381th-388th eigenimages are shown in Figure S3(b) of the Supplementary Material). Given that our purpose is to
reconstruct 𝜷 by selecting the desired features among these eigenimages, leaving out the last portion of eigenimages is
reasonable.

In the implementation of the SSL and adjusted SSL procedures, we initially specify the hyperparameters. For the beta
prior of 𝜋 (Equation (10)), we use a1 = 1 and b1 =P to introduce the sparsity to the regression coefficients as suggested
by Ročková and George.13 For the prior of 𝜏k, k = 1, · · · ,P in the adjusted spike distribution (Equation (12)), we use
a2k =

(
1

sd(𝜉k)
+ 1

)
[3,10]

and b2k = 1, and let 3≤ a2k ≤ 10, so that the mean b2k
a2k−1

of the inverse-Gamma prior will not become

too small and the variance b2k
(a2k−1)2(a2k−2)

will not explode. The rest of hyperparameters are chosen to formulate vague
prior information. For the spike-and-slab penalty, we follow the suggestion of Ročková and George13 to assign 𝜈1 = 1 and
𝜈0 = Pd, where d is a positive constant. Notably, 𝜈0 = Pd only gives a reference of choosing 𝜈0. The specific value of 𝜈0 is
determined by using the modified BIC25 as follows: BICS = log(�̂�2

S) + |S| log N
N

CN , where N is the sample size, |S| denotes
the size of the model, �̂�2

S = SSES∕N, and CN →∞ with an arbitrary slow rate. Following the suggestion of Wang et al,25

we take CN = log log P, where P is the number of parameters comparable to the sample size N.
Estimated potential scale reduction (EPSR) proposed by Gelman et al26 is used to check the convergence of algorithm.

Some pilot runs show that the MCMC algorithm converges within 8000 iterations. Thus, we collect 10 000 simulated
observations after 8000 burn-ins to obtain the Bayesian estimates of the unknown parameters. The computation time for
a single replication is 0.41 hours on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz. 𝛽k is considered to be different from
zero if the proportion of the posterior samples of 𝛾k = 1 is over 50%. The image parameter 𝜷 = (𝛽(1), · · · , 𝛽(V))′ is then
reconstructed according to Equation (6) by using the estimated 𝛽k, k = 1, · · · ,P. The performance of the proposed method
is evaluated based on 100 replications under all scenarios. For the adjusted SSL, the number of selected eigenimages
P0, and the bias (Bias) and root mean square error (RMSE) between the Bayesian estimates and true population values
of parameters are presented in Table 1. For the image parameter 𝜷, we present the average Bias and RMS across all
voxels. The reconstructed estimated image parameters 𝜷 are shown in Figure 1C. The adjusted SSL procedure performs
satisfactorily in terms of bias and RMS for all scenarios, and both the shapes and values of the true parameter images 𝜷
are well captured. On the contrary, based on the modified BIC, the nonadjusted SSL procedure selects a model without
any eigenimage. Thus, the result corresponding to the SSL is unsatisfactory and not presented here. We also consider
implementing the traditional method, which uses BIC to select several leading eigenimages. Under S1, S2, and S3, the
first 5, 3, and 8 eigenimages are selected, respectively. The reconstructed parameter images 𝜷 are shown in Figure 1D,
which are unfavorable.

Notably, in the above simulation study, although the true parameter images 𝛽(v) are chosen based completely on
practical meaning rather than by verifying the assumption on whether they can be expanded on �̂�, the proposed method
can still give a good recovery of the true value and shape.

The performances of SSL and adjusted SSL are further compared through simulation 2 focusing on the second-stage
model. The results show that the adjusted SSL performs much better than SSL. We also investigated the difference of 90%,
95%, and 99% criteria in choosing p and find that the estimation results are stable. The details of simulation 2 are provided
in the Supplementary Material.

5 A STUDY ON THE ADNI DATA SET

We apply the proposed method to the ADNI data set described in the Introduction. Our main interest is to examine the
association between the cognitive ability measured by the three clinical cognitive test scores at the 36th month follow-up
visit and the MRI images along with several covariates obtained during the baseline screening visit. The three cognitive
tests that we focused on are ADAS13 (y1), RAVLT (y2), and FAQ (y3). Their scores are highly correlated and subject
to 45.78% missingness. The observed test scores were standardized prior to analysis. The RAVLT scores were negated,
such that large scores correspond to bad cognitive conditions. The MRI data, which were collected across a variety of
1.5 Tesla MRI scanners with protocols individualized for each scanner, included standard T1-weighted images obtained
using volumetric 3D sagittal MPRAGE or equivalent protocols with varying resolutions. The typical protocol included the
following variables: repetition time (TR)= 2400 milliseconds, inversion time (TI)= 1000 milliseconds, flip angle = 8◦, and
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T A B L E 1 Bayesian estimation of parameters in simulation 1 with three scenarios, S1, S2, and S3

Number of selected eigenimages

S1 S2 S3

P0 6.523 57.418 58.523

Bias (RMSE) Bias (RMSE)

Para S1 S2 S3 Para S1 S2 S3

𝜇1 −0.015 (0.020) 0.007 (0.018) 0.012 (0.026) 𝜆1 — — —

𝜇2 −0.014 (0.021) 0.004 (0.016) 0.010 (0.019) 𝜆2 −0.002 (0.006) −0.001 (0.003) −0.000 (0.002)

𝜇3 −0.016 (0.021) 0.003 (0.016) 0.004 (0.018) 𝜆3 −0.002 (0.006) −0.001 (0.003) −0.001 (0.003)

𝜇4 −0.013 (0.018) 0.003 (0.015) 0.007 (0.020) 𝜆4 −0.002 (0.006) −0.002 (0.003) −0.001 (0.002)

𝛼1 −0.009 (0.023) 0.002 (0.025) −0.000 (0.034) 𝛼2 −0.007 (0.021) −0.003(0.027) 0.006 (0.041)

𝜓𝜖1 −0.164 (0.136) −0.159 (0.159) −0.154 (0.155) 𝜓𝜖3 −0.171 (0.172) −0.170 (0.170) −0.165 (0.165)

𝜓𝜖2 −0.173 (0.173) −0.171 (0.171) −0.166 (0.167) 𝜓𝜖4 −0.172 (0.173) −0.169 (0.169) −0.166 (0.166)

𝜓𝛿 0.020 (0.037) 0.186 (0.140) 0.414 (0.335) 𝜋 — — —

𝜌10 −0.045 (0.165) 0.006 (0.139) −0.054 (0.206) 𝜌11 0.022(0.104) −0.015 (0.117) 0.025 (0.123)

𝜌20 −0.024 (0.128) −0.068 (0.145) −0.070(0.172) 𝜌21 0.023(0.115) 0.012 (0.101) 0.024 (0.125)

𝜌30 −0.035 (0.134) −0.072 (0.168) −0.071(0.184) 𝜌31 −0.001(0.097) 0.013 (0.118) 0.024 (0.145)

𝜌40 −0.007 (0.137) −0.079(0.180) −0.055(0.178) 𝜌41 0.020(0.113) 0.000 (0.122) 0.015 (0.109)

𝜌12 −0.001 (0.111) −0.001(0.119) 0.000 (0.130) 𝜑1 0.022 (0.051) 0.006 (0.036) 0.016 (0.044)

𝜌22 0.029 (0.112) 0.006 (0.112) 0.031 (0.135) 𝜑2 0.006 (0.055) 0.017 (0.043) 0.019 (0.040)

𝜌32 0.018 (0.109) 0.029 (0.117) 0.014 (0.122) 𝜑3 0.009 (0.060) 0.018 (0.045) 0.011 (0.045)

𝜌42 0.002 (0.100) 0.019 (0.130) 0.015 (0.165) 𝜑4 0.000 (0.053) 0.024 (0.058) 0.006 (0.040)

Note: P0 is the average number of selected eigenimages by adjusted SSL based on 100 replications.

field of view (FOV)= 24 cm with a 256× 256× 170 acquisition matrix in the x-, y-, and z-dimensions yielding a voxel size of
1.25× 1.26× 1.2 mm3.27 The MRI data were preprocessed by standard steps including anterior commissure and posterior
commissure correction, skull-stripping, cerebellum removing, intensity inhomogeneity correction, registration,28-31 and
finally down-sampled to 128× 128× 128 for our real data analysis. The other covariates under consideration include one
genetic variable, namely, the APOE4 gene (zi1), which is the only known genetic determinant of AD; zi1 = 1 if the subject
carries at least one APOE4 allele and zi1 = 0 otherwise. In addition, gender (zi2, 1 = male, 0 = female), age (zi3), education
level (zi4: total years of education), race (zi5, 1 = white, 0 = other), and marriage status (zi6, never married = 1, ever
married = 0) were included in the LoI model. In the exponential tilting model, we chose the covariates wi = (zi1, … , zi5)′
to examine their effects on the probability of missingness of yi.

A total of 832 subjects with baseline 1.5T MRI scans acquired from http://adni.loni.usc.edu/ were collected and pre-
processed. The three test scores and six covariates were extracted from the “key ADNI tables merged into one table”
from the same website. By matching the subject ID, we obtained 807 subjects who have both baseline MRI images and
clinical records. After deleting a subject with unknown marriage status, we had N = 806 subjects (225 CN, 394 MCI, 187
AD) with an average age 75.24 of whom 470 are males and 336 are females. For each subject, the observed data included
128× 128× 128 MRI images (Xi), three test scores (yi), missing indicator vector (ri), and covariates (zi, wi).

For our analysis, we applied the proposed two-stage approach. In the first stage, we deleted the background vox-
els of the 128× 128× 128 preprocessed MRI images to reduce the total number of voxels from 221 to V = 201 337. Then,
the remaining voxels are voxelwise centered and X= (X1, … , XN) is a 201 337× 806 data matrix composed of vector-
ized centered nonbackground voxels. We conduct SVD of X/cV (cV =

√
V ≈ 449), which can be accomplished easily and

quickly using the Matlab function “svd.” The eigenimages and eigenscores are then obtained using Equations (2) and (3).
Notably, the spatial structure and correlation of the brain is reasonably addressed by the eigenimages. For example, the
first eigenimage mainly describes the central ventricle, and the second eigenimage mainly accounts for the cortex (slices

http://adni.loni.usc.edu/
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T A B L E 2 Bayesian estimation of parameters in the analysis of ADNI data set with 𝜈0 = 14

Parameters in the LoI regression model Other parameters

Para Est SD Para Est SD Para Est SD Para Est SD

𝛼1 0.533 0.128 𝛽1 −0.222 0.040 𝜇1 2.000 0.372 𝜆1 — —

𝛼2 0.252 0.177 𝛽2 −0.478 0.060 𝜇2 1.700 0.317 𝜆2 0.831 0.039

𝛼3 −0.519 0.085 𝛽3 −0.865 0.106 𝜇3 1.869 0.355 𝜆3 0.949 0.035

𝛼4 −0.277 0.068 𝛽4 −0.642 0.120 𝜑1 3.866 0.555 𝜓𝜖1 0.264 0.028

𝛼5 0.060 0.276 𝛽5 −1.187 0.148 𝜑2 5.618 0.546 𝜓𝜖2 0.597 0.045

𝛼6 −0.803 0.256 𝛽6 −0.527 0.169 𝜑3 2.976 0.325 𝜓𝜖3 0.366 0.033

𝛽7 0.606 0.174 𝜌10 −7.218 1.624 𝜌11 0.281 0.265

𝜓𝛿 2.496 0.265 𝛽8 −0.426 0.154 𝜌20 −7.775 1.276 𝜌21 0.230 0.269

𝜋 0.016 0.004 𝛽11 1.022 0.185 𝜌30 −4.776 0.990 𝜌31 0.203 0.217

𝛽16 0.678 0.197 𝜌12 0.823 0.596 𝜌13 −0.230 0.251

𝛽17 0.636 0.201 𝜌22 0.082 0.565 𝜌23 −0.073 0.284

𝛽35 0.922 0.257 𝜌32 −0.279 0.441 𝜌33 −0.092 0.216

𝜌14 0.502 0.798 𝜌15 −1.198 0.506

𝜌24 −0.804 1.110 𝜌25 −0.507 0.543

𝜌34 −0.107 0.940 𝜌35 −1.084 0.399

of the first and second eigenimages are shown in Figure S6(a,b) of the Supplementary Material). In the second stage,
instead of using all N = 806 eigenscores, we only incorporated the first P= 430 eigenscores that explain approximately
90% of the total variability32 because the later eigenimages became massy. Slices of the 431th and 432th eigenimages are
shown in Figure S6(c,d) of the Supplementary Material. We applied the SSL and adjusted SSL to conduct the subsequent
analysis. The priors were specified similar to that of Simulation 1. We first assigned 𝜈 = 1 and 𝜈0 = Pd and then deter-
mined the specific value of 𝜈0 by using the modified BIC. The EPSR plot depicted in Supplementary Material Figure S8
showed the MCMC algorithm converged within 10 000 iterations. Therefore, we discarded the first 10 000 iterations as
burn-ins and collected the subsequent 10 000 iterations for Bayesian inference. The computation time was 11.62 hours on
Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80 GHz. For the SSL prior, regardless of the choice of 𝜈0, obtaining a reliable result
is difficult. Actually, when 𝜈0 was set to a small value, say, 3.0, the SSL procedure selected a model without any eigenim-
age. When 𝜈0 was slightly increased, however, the result jumped to a model of considerably large size with the variance
(𝜓𝛿) exploded. On the contrary, the adjusted SSL procedure produced reasonable results. Thus, we only present and dis-
cuss the result of the adjusted SSL in the following interpretations. Table 2 reports the parameter estimates, and selected
slices of the reconstructed estimated image parameter are shown in Figure S7 of the Supplementary Material. Based on
the obtained results, we have the following observations.

In the factor analysis model, all factor loadings differ substantially from zero (�̂� = (1∗, 0.831, 0.949)′), thereby indi-
cating that the latent factor “cognitive ability (𝜂i)” is well characterized by the three tests. In the LoI regression model,
the image parameter �̂� was reconstructed. We detected several key regions of interest, which are in good agreement with
the existing literature. For example, the positive effects of the hippocampal and amygdalar regions on cognitive ability
are identified (Figure 2A). Among the core biomarkers of AD, hippocampal atrophy is the most validated and has been
used in research to stage the progression of AD pathology in the brain across the entire disease spectrum.33 The iden-
tified positive effect of the lateral temporal and dorsal parietal cortices (Figure 2B) is consistent with the literature that
neocortical atrophy is related closely to AD progression.34 A reduction in the volumes of the putamen and thalamus is
found to have a strong positive effect on cognitive decline (Figure 2C), which agrees with the literature that in addition
to neo-cortical atrophy, deep gray matter structures, such as hippocampus, putamen, and thalamus, can also contribute
to AD progression.35 Negative effects of medial frontal gyrus as well as perirhinal and entorhinal cortices are detected
(Figure 2D), which align with the findings in neuroscience studies that AD severity is negatively associated with atrophy
or cortical thickness in the frontal and hippocampal regions.36
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F I G U R E 2 A, hippocampal and
amygdalar; B, lateral temporal and
dorsal parietal cortices; C, putamen and
thalamus; D, frontal gyrus, perirhinal,
and entorhinal cortices [Colour figure
can be viewed at wileyonlinelibrary.com]

In addition to being an image predictor, APOE4 contributes to a worse cognitive condition (�̂�1 = 0.533(0.128)),
whereas higher education level (𝛼4 = −0.277(0.068)) and married (𝛼6 = −0.803(0.265)) are associated with better cogni-
tive condition. These findings are in line with existing medical literature.37 However, age was also detected to contribute
to better cognitive condition. A possible reason could be that the ADNI study focused on the elderly population (around
70 years old), and healthy elder people tend to possess better cognitive ability. Further investigation is required to compre-
hend better this unexpected result. In the exponential tilting model, race had negative effects on the missing probability
of ADAD13 (�̂�15 = −1.198(0.506)) and FAQ (�̂�35 = −1.084(0.399)). The tilting parameters are all positive and differ sub-
stantially from zero (�̂�1 = 3.866(0.555), �̂�2 = 5.618(0.546), �̂�3 = 2.976(0.325)), thereby reconfirming the nonignorability
of the missingness.

6 DISCUSSION

We proposed an LoI regression model for examining the effects of imaging and other predictors on a latent construct of
interest in the presence of nonignorable missing data. A two-stage method composed of a FPCA method and SSL-related
procedures was developed to perform statistical inference. Simulation studies showed that our method can recover
the true parameters satisfactorily, including those related to the imaging part. The real data analysis results identified
important brain regions associated with AD pathology.

In the present study, the outcome is cognitive ability, which is measured by three cognitive tests. The traditional
method establishes a regression model for each test outcome and then relates the three test outcomes by assuming a
covariance matrix for their measurement errors. By contrast, the proposed approach introduced a factor analysis model
to group the three test outcomes into a latent factor and then regressed the latent factor on imaging predictors and other
covariates. Consequently, the proposed approach reduces the multivariate scalar-on-image regression problem to a uni-
variate LoI regression. The model dimensionality and computational burden are alleviated considerably. Meanwhile, the
interpretations of model parameters become simple and comprehensible. Such a joint modeling approach also has high
potential to be generalized to neuroimaging/genomics studies.38

The present study has several limitations. First, our method was implemented in a two-stage basis. A single-stage
method, such as Ising and Gaussian process priors,22,39 may be considered to further improve the estimation performance.
However, such priors introduce high computational challenges under ultrahigh-dimensional settings. The feasibility of
these developments requires further investigation. Second, in the present study, we employed unsupervised FPCA for
feature extraction. Various supervised methods, such as multiscale weighted principal component regression,40 may
be considered to improve the quality of the extracted features. Third, we proposed a parametric LoI regression model.
This parametric framework can be extended to a highly sophisticated semiparametric/nonparametric context. Fourth,
to choose the multiple neurocognitive scores that characterize the latent variable in the ADNI study, we utilized a vari-
able “diagnosis” (CN or AD) and conducted two-sample t-tests to examine the differences of average scores between
CN and AD groups. ADAS13, RAVLT-learning, and FAQ scores were selected based on P-values and their popularity in
measuring cognitive ability. Our choice may not be optimal, and the use of other scores is worthy of further investigation.
One promising approach is to implement an explanatory factor analysis that allows for inclusion of all possible scores

http://wileyonlinelibrary.com
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and selects relevant scores based on estimated factor loadings. Finally, the current missing data model dose not accom-
modate the correlation of multiple missing indicators, which is often the case in real applications. A possible solution
for addressing this issue is to introduce shared or correlated random effects to the missing data model. We reanalyzed
the ADNI data set by introducing a shared random effect to the three missing data models (Equation (8), j= 1, 2, 3). The
obtained results are similar to those presented in Section 5. Thus, the correlation between the missingness of multiple
outcomes does not seem to have a serious impact on estimation in the ADNI study. Nevertheless, this issue is important
and worthy of attention in substantive research.
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